About
Dr. George Philippidis - Associate Dean of Research & Director of Sustainable Energy
Title: Professor
CV: View CV
Phone: (813) 974-9333
Email: gphilippidis@usf.edu
Biography
Dr. George Philippidis is the Associate Dean of Research and Director of the Sustainable
Energy concentration at the 's Patel College of Global
Sustainability (PCGS). He is a Fulbright Specialist Scholar and an expert in biofuels
and bioproducts. He holds a Ph.D. in Chemical Engineering from the University of Minnesota
and an MBA from the University of Denver. He has authored numerous publications and
11 patents in clean technologies and has developed graduate courses in renewable energy
and sustainability.
Dr. Philippidis has 25 years of experience leading strategic business units in the
private sector and directing applied research and development in the public sector.
He started his career at the National Renewable Energy Laboratory (NREL) in Denver
before moving to Thermo Fisher Scientific in Boston, a Fortune 500 company. He then
joined the Applied Research Center at Florida International University in Miami, where
he created and directed the Center's energy business.
At USF, Dr. Philippidis directs applied research, scale-up, and technology commercialization
in the conversion of algae and biomass to sustainable bioproducts, fuels, and power
in partnership with industry. He has worked in venture capital and managed energy
and environmental projects in the US and Latin America. He has advised the US State
Department, the US Department of Agriculture, the US Department of Energy, the Organization
of American States, and the Florida Office of Energy and is a member of the advisory
board of companies.
Courses
- IDS 6207 – Renewable Transportation Fuels (3)
This course provides energy practitioners with a thorough understanding of the technology, business, and financial and sustainability issues of renewable transportation fuels, which are intended to power vehicles and aviation as the economy shifts towards a greener and more sustainable basis.This course is available on-campus and online. - IDS 6208 – Renewable Power Portfolio (3)
This course analyzes the market status and growth potential of the portfolio of renewable power sources (solar, wind, geothermal, ocean, biogas), production technologies, economics and financing, infrastructure integration and smart grid issues, and regulatory and environmental aspects. This course is available on-campus and online.
-
IDS 6210 Bioresources for a Sustainable Future (3)
Agricultural and biological resources (bioresources) for producing food, bio-based products, and renewable energy are presented and discusses along with their environmental and climate change impact using an integrated food-energy-water nexus approach. This course is available on-campus and online.
Research Interest
Publications
Areas of Focus:
Algae Technology
Algae represent a promising source of renewable fuels and products, but with the added benefit of serving as a sink for carbon dioxide and wastewater. Using our experience in algae engineering for the production of chemicals and fuels, we use native Floridian algae strains in our lab and at outdoor facilities to test the production of algal products under real-world conditions. Algal lipids can be converted to biodiesel using transesterification or can be thermally treated to produce jet fuel for commercial airliners and military jets. Algal sugars can be used to produce numerous chemicals, whereas algal protein can serve as animal feed and fish food. Our applied research closes the gap between innovative ideas and the marketplace.
- Projects Include: Research photo
- Design of cost-effective Cultivation Systems
- Scale-up and Operation of Algae Production Systems
- Optimization of productivity
- Water, Nutrient, and Energy Management
- Co-product Development
- Intellectual Property Management
Biofuels & Bioproducts from Biomass
Biomass is an abundant and inexpensive local resource for biorefineries designed to produce value-added products and clean power. Florida generates significant amounts of biomass annually: sugarcane bagasse and yard waste in South Florida, citrus peel and agricultural residues in Central Florida, and woody biomass in Northern Florida.
We research and optimize the conversion of various biomass species to sugars in scalable and cost-effective ways through biochemical conversion. First, biomass is pretreated using mild conditions and green chemistry principles. Then, cellulase enzymes are employed to convert cellulose to simple sugars. Those sugars can form the basis of a sustainable green economy, as they are readily convertible via fermentation (or thermochemical processing) to chemical precursors for the manufacture of biofuels, plastics, resins, films, and other renewable products. In essence, biomass can replace oil as the source of chemicals needed for consumer products.
A biorefinery pilot plant has been designed and operated in partnership with a major
sugar company in Florida. It provides USF and its collaborators with unique process
development and scale-up capabilities in a real-world environment.
Biodiesel
Fuel diversification is needed for diesel and jet engines. The United States consumes 57 billion gallons of diesel, 21 billion gallons of aviation fuel, and 5 billion gallons of military fuels annually, hence depending significantly on foreign oil. Such dependence makes the United States vulnerable to political instability around the world.
We have technical and business expertise in biodiesel production with a focus on sustainable technologies and resources.
-
Biodiesel from inedible and used vegetable oils
-
Biodiesel from algal lipid
-
Biodiesel production using supercritical fluid technology
Philippidis, G. “Biofuels and Updates.” BABIEC Miami Conference, Miami, FL. April 10-12-2024.
Dr. Philippidis, AAAS Fellow (American Association for the Advancement of Sciences)